NWN Z-MAT 2016 DATASHEET

Z-mat Library

Algorithms

Integrators

- Backward Euler
- Forward Euler
- Mid-point
- Runge-Kutta
- Solution methods
 - Newton's
- Combined with other root finding algorithms Fail-safe roll over algorithms
- Controls and tolerances for all
 - Load sub-increments

Material coefficients

Tabular data

Interpreted functions (applies to coefficients of every model) Function of temperature and other prescribed variables Storage of values

General Properties

Thermal behavior (conductivity, heat capacity) Diffusion behavior (diffusivity, generalized damping) Phase change / latent heat

Mechanical Properties

Elasticity (iso, ortho, aniso) Hyperelasticity (Arruda-Boyce, Mooney-Rivlin, Ogden, etc.) Thermal expansion (iso, ortho, aniso) Mechanical phase strain Adiabatic heating Maxwell viscoelasticity

Frameworks

Gen_evp Porous_plasticity Finite_strain_plasticity

Gen_evp Potentials

Viscoplasticity / Chaboche (coupled with damage) Associated flow SUVIC kinematic hardening models Delobelle model with recovery Ratcheting model Drucker-Prager (including kinematic hardening) Single crystals (FCC, BCC, HCP)

Porous_plasticity components

Plasticity potentials

- Gurson
- Elliptic
- Rousselier
- Cam-clay
- Nucleation models
 - Gaussian
 - Exponential

Kinematic hardening

Finite_strain_plasticity

Potentials

All can be combined with kinematic hardening and hyperelasticity Viscoplastic Norton's flow Rate independent plasticity Associated versions

Flow potentials

Time independent plasticity Multi-Norton viscoplastic rate Hyperbolic Strain hardening Norton with exponential overstress Inverse exponential Inverse summation of rates Bodner-Partom MATMOD

Yield criteria

Von Mises Tresca Linear Drucker-Prager Hill / General anisotropic

Isotropic hardening

Constant, linear, nonlinear Tabular Recovery Double saturation rate Power law Strain range memory model

Kinematic hardening

Linear, nonlinear (FA, Chaboche) With static recovery / creep Nonlinear with evolving saturation Linear to nonlinear 3D ratcheting control (Evrad) Delobelle model Crystalline models Anisotropic nonlinear

Damage and modifiers

Isotropic damage variable

- Plastic strain
- Creep strain
- Fatigue damage
- Elastic energy
- Combination

Anisotropic damage (with anisotropic viscoplasticity) Polycrystal localization

Z-opt/Z-sim

Optimization Algorithms

Simplex, SQP Nelder-Mead Levenberg-Marquadt Genetic Evolution Any number of variables Objective functions with weights

Test Data

General FE results of a BVP Uniaxial, Biaxial, Simple shear (rate dependent) Cyclic stress/strain (rate dependent) Cycle and hold SRP (strain range partitioning) Relaxation and creep

Z-post

Max / min / average analysis Averages in and around elements Weibull, Beremin analysis Standard post-processing (all invariants of all tensors, their norms, principal values and Eigen vectors) Material computations for cycles skipped during analysis Cycle-skipping, when applicable Strain and stress based fatigue Creep damage LCF / HCF fatigue models SWT, Chaboche TMF models and proprietary extensions ASCII export with arbitrary precision